Aromatase, brain sexualization and plasticity: the fish paradigm.
نویسندگان
چکیده
In contrast to mammals, teleost fish have a very labile genetic sex determination. Sex differentiation is influenced by a combination of hormonal, social and environmental factors and teleost fishes exhibit many examples of hermaphroditism. This means that the brain of fish is not irreversibly sexualized early in life. This review aims at highlighting some unique features of fish that may explain their brain sexual plasticity. Unlike mammals, in which brain aromatase activity decreases after birth, adult teleosts exhibit an intense aromatase activity due to strong expression of one of two aromatase genes (aromatase A or cyp19a1a and aromatase B or cyp19a1b) that arose from a gene duplication event. Interestingly, aromatase B is only expressed in radial glial cells (RGC) of adult fish. These cells persist throughout life and act as progenitors in the brain of both developing and adult fish. In agreement with the fact that brain aromatase activity is correlated with sex steroid levels, the high expression of cyp19a1b is due to an autoregulatory loop through which estrogens and aromatizable androgens upregulate aromatase expression. Given the well-established roles of estrogens and aromatase on brain sexualization, these features suggest that the brain of fish conserves properties of embryonic mammalian brain throughout life - high neurogenic activity and high aromatase expression in progenitor cells correlated with sex steroid levels. The permanent dialogue between the brain and the gonad would permit sex changes and thus the emergence of a variety of reproductive strategies. Other hypotheses are also discussed.
منابع مشابه
Aromatase regulates aggression in the African cichlid fish Astatotilapia burtoni.
The roles of estrogen and androgens in male social behavior are well studied, but little is known about how these hormones contribute to behavior in a social hierarchy. Here we test the role of aromatase, the enzyme that converts testosterone into estradiol, in mediating aggression and reproductive behavior in male Astatotilapia burtoni, an African cichlid fish that displays remarkable plastici...
متن کاملAromatase in the brain of teleost fish: expression, regulation and putative functions.
Unlike that of mammals, the brain of teleost fish exhibits an intense aromatase activity due to the strong expression of one of two aromatase genes (aromatase A or cyp19a1a and aromatase B or cyp19a1b) that arose from a gene duplication event. In situ hybridization, immunohistochemistry and expression of GFP (green fluorescent protein) in transgenic tg(cyp19a1b-GFP) fish demonstrate that aromat...
متن کاملInhibition of Aromatase Induces Partial Sex Change in a Cichlid Fish: Distinct Functions for Sex Steroids in Brains and Gonads.
Sex steroids are major drivers of sexual development and also responsible for the maintenance of the established gender. Especially fishes exhibit great plasticity and less conservation in sex determination and sexual development compared to other vertebrate groups. In addition, fishes have a constant sex steroid production throughout their entire lifespan, which makes them particularly suscept...
متن کاملFish with thermolabile sex determination (TSD) as models to study brain sex differentiation.
As fish are ectothermic animals, water temperature can affect their basic biological processes such as larval development, growth and reproduction. Similar to reptiles, the incubation temperature during early phases of development is capable to modify sex ratios in a large number of fish species. This phenomenon, known as thermolabile sex determination (TSD) was first reported in Menidia menidi...
متن کاملAromatase, estrogen receptors and brain development in fish and amphibians.
Estrogens affect brain development of vertebrates, not only by impacting activity and morphology of existing circuits, but also by modulating embryonic and adult neurogenesis. The issue is complex as estrogens can not only originate from peripheral tissues, but also be locally produced within the brain itself due to local aromatization of androgens. In this respect, teleost fishes are quite uni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European journal of neuroscience
دوره 32 12 شماره
صفحات -
تاریخ انتشار 2010